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\  CJ> OVERLAP INTEGRALS AND MOLECuLAR ENERGIES1 

Robert S, Mulliker. 
Department of Fnysics 

The University of Chicago 
Chloago 67, Illinois 

I.  INTRODUCTION 

In thstr 1531 papers on the quantum theory of valence, Slatei 

and Pauling discussed the conditions governing the strengths of elec- 

tron-pair bonds according to the Heitler-London theory. They pointed 

out that the strength of the bond formed between two atoms by an elec- 

tron on each should tend to be larger the more the regions of space 

oocupied by the two electrons overlap. These regions of space are de- 

fined by the one-eleotron wave functions, or orbltals, oocupied by tha 

electrons, The criterion for maximum strength is then that of maximum 

overlapping of these orbltals. 

The best way to gauge the total amount of overlap of two orbi* 

tals as an index of bond strength is probably to write down a mathemati- 

cal expression for each, to form the product of these, and then to take 
p 

the integral of this product over all space (overlap integral).   (Of 

course, only the region of space between and close to the two atoms will 

oontrlbute appreciably.) That is, if J    represents the expression for 

the orbital on one atom, and^ for that on the other, the overlap inte- 

gral, which la commonly symbolised by S, is given by 

S=^ta*bdV- <*> 
all space 

It may be helpful before proceeding further to try to see a 

little more dearly why and how it is that Just the quantity S enters 

into the determination of the bond energy. For this purpose, a 
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consideration of the simple case of the one-electron bond in H  is con- 

venient, using the MO (moleoular orbital) theory of valence* This the- 

w °ry approaches the problem of valence somewhat differently than the 

more familiar VB (valence-bond, or Heitler-London-Slater-Paullng) the- 

ory, but gives similar (though not identical) results as regards the 

dependence of bond strengths on overlap integrals* The MO theory has 

the advantage of being applicable to one-electron and three-electron 

bonds as well as to electron-pair bends, and of being able to deal more 

simply than the VB theory with heteropolar bonds, conjugated and aro- 

matlo molecules, and so on; in the MO theory, no special oonoept of re- 

W  sonance among two or more bond structures Is needed in these situations* 

In H , the one electron occupies a bonding molecular orbital, 

say 0,  which may be approximately constructed by forming a symmetrical 

linear combination of ordinary normalized Ls atomic orbitals, say Is 

and Is. , of the two atoms a and b. That is, 

t fc o(l3a • leb) , 

where o = 1/(2 + 2S)S 

C 
is a normalizing factor;  S here is  the overlap integral in which 7    and 

* ft 

ytv of Eq. (1) are ls and La respectively*  The factor o  is so chosen 

that jTdv shall represent the probability of finding the eleotron in an; 

given small volume dv of space, 0 of course being a funotion of posi- 

tion in space, determined by the forms of the simple familiar mathemati- 

cal expressions for ls and Is * Hence, 
~T8      ""b 

(f^ dv * 1 j 

that is, the probability is. 1 of finding the electron somewhere* The 

funotion 0    is then a probability density funotion; when multiplied by 

the charge -e of an electron, it becomes a charge density funotion for 
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the eleotron. Using (2), one sees tha^ 

This divides the total probability or charge density function Into thrae 

parts, the total magnitude of each of which can be obtained by integrat- 

ing* as follows: 

y°dv 8 [l/(2 + 2S)](lsa
2dv *  [l/(2 • 2S)]\l8to

2dv + [l/(H»S)| (ls^ls^v 

- (*)/<! • S) • i/(l  + 3) • 3/(1 • S) , 

f since \ls 2dv » \ls_2dv « 1, and \ls la dv * 3. It is seen that on tho 

average the fraction 3/(1 +3) of the electronic sharge is in the over- 

lii£ region, the remaining fraction 1/(1 • S) being centered one half 

abound each of the two nuclei a and b. Or, in other words, the electron 

spends the fraction 3/(1 + 3) of its time in the overlap region, and 

£/(l + 3) of its time in a Is orbit on a, and the same on b« 

For the ease of an eleotron spending a full half cf its time 

in a Is orbit on nucleus a in the field of nucleus b, and the other 

- half in a ls_ orbit on b in the field of a, the energy would be the same 

as if it spent all its time in a Is orbit on one nucleus but in the Cou- 

lomb field of the other; in other words, it would be simply the energy 

of an H atom in the field of an H ion. This energy would differ only 

moderately from that of an H atom alone in the absence of an H* ion. 

But quantum mechanics says that actually in H  the fraction 3/(1 + 3) 

of the total electron density has been shifted away from both a and b 

into the overlap region between them; and shows, furthermore, that it is 

precisely this partial shift of electronic charge into the inoreased 

— field in the overlap region which is primarily responsible for the sta- 

bility of H- • Henoe, it is to be expected that the bond energy of Hpf 

should be approximately proportional to 3/(1 + 3). 
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Slnoe eooording to MO theory the same sort of considerations 

hold for oovalent bonding in general as for H^*, it ia plausible to sup 

p pose that bond energies (more accurately,, oner T'? a of atomlaatlon) may 

?n, general be represented by expressions of the iTerm 

D - 21 A1I1S1/(1 • 31) , (4) 

the sun £ being taken over all the bonding electrons. 

In Eq. (4), each A,I. is meant to be a proportionality oon- 
"T.~"i 

atant. The reason for writing these in the form AI, rather than just 

A, will be explained in a moment* Slnoe the theory behind Eq. (4) is 

Y   only rough, it makes sense to treat AI as an empirical quantity, rather 

than to try to determine it theoretically. By so doing, one can expeot 

to compensate to a considerable extent for the approximateness of the 

theory. 

However, it is desirable first to take note that on the basis 

of very simple and general theoretical considerations one expects, for 

a given value of S, larger bond energies for combinations of atoms 

whose eleotrons are strongly held (e.£., H atoms) than for those whose 

t, eleotrons are loosely held (e.g., Li atoms)* This is because in the 

former oase, with smaller atomic orbitala, the eleotrons are concen- 

trated in stronger fields of force, closer to the nuclei, so that larger 

energy effoots are involved. Since the energy of bonding may be con- 

sidered as a modification or perturbation of the original energy of the 

valenoe eleotrons, it is to be expected that it should be more or less 

proportional to the latter. Now the lonlcation energy I of a valenoe 

eleotron in an atom is a good measure of its energy in the atom ("blnd- 

fj lng energy"). It is therefore plausible to write the proportionality 

factor preceding each S/(l + 3) in Eq. (4) in the form AI, with I to be 

obtained from speotrosoopio or electron impact data on atoms. This 
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leaves A to be determined as an empirical quantity which, it nay reason- 

ably be hoped, oan be treated ae a constant, at least for orbitals of 

(any one type. In an as yet somewhat preliminary study, this hope has 

been realised to an encouraging degree with the use of just two values 

of A, one for <T bonds and one for * bonds* (^Actuallyt  the procedure 

used was rather more oomplioated than that just outlined, but the basic 

idea and plan was the samet see further discussion belowJ 

II. DEGREES OP OVERLAP FOR VARIOUS TYPES OP VALENCE ORBITALS 

The way in which the overlap integral S for a given pair of 

oroitals varies with the nature of these orbitals, and with the dis- 

' tanoe between the atoms with which they are associated, oan be seen 

qualitatively by a study of Fig. 1.  (Quantitative results are graphed 

in Tig. 2.) Fig. 1 depicts, rather schematically, the three pure types 

of valenoe orbitals (2B,  2ptf, and 2£x), and one representative hybrid 

type (2te, the tetrahedral hybrid of 2s, and 2p_<r), for the case of two 

like first-row atoms, say two oarbon atoms. For each type of orbital, 

the figure shows the pair of atoms (a and b), in every case at the same 

g- distanoe R apart, with an orbital of the given type shown attached to 

both a and b. Each orbital consists of a region where it is positive 

(• signs) and one where it is negative (- signs).  (The meaning would 

not be changed if all signs in the figure were reversed, simultaneously; 

it is only the relative signs which matter*) The heavy oiroles or 

curves outlining the orbitals in the figure inclose the major parts of 

the regions where the orbitals are of any considerable magnitude* 

Straight lines like porouplne quills have, however, been drawn extending 

radially out beyond these bounding ourves in order to suggest that the 

** orbitals actually fade away gradually toward zero. The various orbitals 

have the forms (for either a or b) 
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* *2j> " P2p(,,ir",M 9 

%2p» ' V**8"' «' 

with a • £ for the tetrahedral hybrid shown; © (or 0^) is the angle 

between any radius veotor j* (°r J?b) •
n<* the line drawn from the center 

of a toward that of b (or from that of b toward that of a); 0 * Is a 

_ similar angle between r and any line drawn from the center of a perpen- 

d.tcular to the line a—b. For present purposes, every orbital should 

be normalised so that (^* dv a 1, and it will be assumed that F_ or 

P(J in Eqs. (5) oontains a factor which has been adjusted so that this 

is true* 

Referring now to Fig, 1, let it be imagined that R is pro- 

gressively deorcased, in eaoh sketch.  It is seen that appreciable over- 

lapping of corresponding a and b orbitals occurs soonest forY.,. , next 

^-jfor'V  ; then, at considerably smaller R, tovy* ,  and finally for V 

It is also seen that if R were finally decreased to zero, X,  and ^ 

would ooinolde identically, likewise ^2   and 7„  , while Vp        and 

%2-QCS.   would also ooinolde but with reversed sign* From the foregoing 

discussion, it is now possible to make a rather good estimate of the be- 

havior of the overlap Integral 3 » \Xa7b — as A ^unotion °' S ln e»°h 

oase. At large R, S is zero* For 'Y^  it begins to rise at fairly 

large R, but before long reaches a maximum, falls at smaller R, beoomea 

negative, and goes to -1 at R a 0. For both X> and Juorm$  it begins to 

rise strongly only at rather small R, but keeps on rising steadily to 

the value +1 at R » 0. For Y«t $  overlap begins at even larger R than 

for %2t)0-'  iiice the latter also, S rises to a maximum and then decreases; 



but the maximum is very much higher for 'Yfit , and at smaller R. 

These results obtained from Fig* 1 by inspection can be Bade 

pmore precise if mathematical expressions for I> (r) and F (r) are in- 

troduced into Eq, (5). 3 is aotually evaluated by integration in each 

case for any value of R, and the results are then plotted as a function 

of R, Graphs of this kind are shown in Fig. 2 for all the orbital types 

of Fig. 1, and for the additional hybrid types *Y-  and J        (a « (1/3) 

and (&)" respectively in Eqs. (5)). It will be seen that the behavior 

of S in eaoh case agrees with what had already been concluded using Fig* 

I. 

^T        The computations on which Fig. 2 was based were made using 

sonewhat roughly approximate expressions, of the well-known Slater type, 

for the various orbitals.  These involve putting 

P2s " P8p " Cr»"Zr/8*° (6) 

in Eqs.   (5), where C is a constant depending on Z.    Z is an effective 

nuclear charge smaller than the actual nuclear charge but increasing 

n\th the latter,  and a~ is the radius of the la Bohr orbit for the hy- 

%>• diK>gen atom (0.529A).    Extensive numerical tables of Slater-AO overlap 

integrals are now available for a wide variety of pairs of orbitals and 

a wide range of R values. 

While Slater orbitals are convenient for the calculation of S 

values because of their relative simplicity,  orbitals of the muoh more 

accurate SCF  (self-oonslstent-fleld) type should be used wherever pos- 

sible.    Following is a brief extraot from more extensive tables    to il- 

lustrate how the SCF differ from the    Slater S values for the oase of 

J the overlap of two  carbon orbitals. 

i.' 
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TABLE t 

COMPARISON OF SLATER- ARD SCF-ORBITAL OVERLAP INTEGRALS 

FOR CARBON-CARBON BONDS 

he h. -2p* 
s 
*"2te 

S 
"T2pit 

Slater 
and   SCF Slater   SCF Slater SCF Slater    SCF 

1.20X 0.51 0.29      0.14 0.75 0.68 
• 

0.34      0.43 

1.352 0.43 0.33      0.19 0.72 0.68 0.27      0.36      1 

1.542 0.34 0.33      0.24 0.65 0.64 0.19      0.29 
1 

1.792 0.24 0.29      0.26^ 0.52 0.55 0.12      0.21      ! 
j 

2.282 1     0.11 0.17      0.22       0.23 
..._    .             .   .,     1 

0.39 0.05      0.12       ' 

r  The maximum value is 0.26 at 1.84A. 

III.  OVERLAP AND BONDING POWER FOR VARIOUS TYPES OF ORBITALS 

Referring to Fig. 2, taken in connection with Eq. (4), some 

Interesting conclusions can be reached. In agreement with familiar con- 

siderations of Pauling, Slater, and others, muoh greater strength is 

predioted for ,s,£(fi*) hybrid bonds than for either pure JI or pure £<T> 

t_ bonds; however, contrary to Pauling,  the overlap integral criterion 

indicates that trigonal and digonal should be somewhat stronger (in- 

stead of weaker) than tetrahedral hybrid bonds. Fig. 2 further indi- 

cates that p/P and hybrid bonds should be long-range bonds, in agreement 

with Pauling and Slater, but that s and £X bonds should be strong only 

at short range. Fig. 2 (especially if one visualises how it would look 

when revised to the improved basis of SCF orbltals—of. Table I) indi- 
o 

cates,   contrary to Pauling,     that pure 2ptfbonds should at best be rela- 

1'   tively weak, but that 2js and 2£jt bonds should be strong at sufficiently 

olose approach of two atoms. 

The foregoing results give  a very satisfactory explanation of 



I» 9 • 

some of the major characteristics of single, double. And triple bonds. 

If two atoms oome together to form a single bond, they ohoose a & bond, 

S because of its long-range oharaotert    either a 2g? bond (e.g., P—P, 

<0—0N In HgOg, or   N—v' In H H •,  these are all notably weak), or if 

possible a 2te<r bond (e.g., —0—q-~in C2Hfi;  this is fairly strong in 

aooord with its hybrid oharaoter).    If two atoms should approaoh eaoh 

other to form a double or triple bond, they would be expeoted first to 

form a <? bond.    This would pull them olosely enough together so that a 

x bond or bonds oould begin to take hold,  giving a moderately strong 

double bond (e.g.,  0=«o,    N»*N ,  or   C=»(£), or a strong triple bond 

£ («u&., H=H or— CEEC— )•    The great strength of the triple bond in N- 

must be attributed to the faot that, although the N—V <r bond alone  (as 

in N_H.) is very weak,  and although a single * bond alone does not OC- 
16     4 

our,  the cooperative aotion of one <? and two % bonds pulls the atoms 

olosely enough together so that S beoomes fairly large for the % bonds, 

which then become strong. 

To make  the foregoing discussion more concrete, SCF-orbital 

S values for some representative examples of single and multiple bonds 

%,  at their normal bond lengths are given in Table II. 

€ 

TABLE     H 

SCP-ORBITAL S  VALUES FOR SOME REPRESENTATIVE BONDS 

Types of Bond and S Values Bond nil) 
H—H 0.74 

Li—Li 2.67 

C—C 1.54 

C«C 1.35 

C3D 1.20 

P—P 1.44 

C—H 1.10 

Is (S a 0.75) 

2s (S a 0.59) 

2te   (S - 0.64) 

2tr  (S = 0.68) and 2px    (S a 0.36) —»    "" x    *~ 
2di   (S a 0.73) and 2DJR   (3 a 0.43) 

2p0* (S a 0.22) 
2lgQ—*£H (& a 0.72)^ 
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Hie logical next step would be to implement Eq. (4) by deter- 

mining the empirical oonatant A for various types of bonds. This oan 

p be done, using available data on heats of formation and dissociation, 

and it is found that A is about 0,7 for s_—a bonds (the value is 0.77 

for Hg), about 0.95 for other & bonds (including C—H and C—C * bonds). 

and about 1.5 for it bonds. These values (which may be called k 3  A^ 

and A respectively) are subject to existing uncertainties abouU heats 

of atomitation, particularly *or carbon compounds, but it is at an/ 

rate clear that A is considerably larger than A^ This means that v.he 

strengths of % bonds are relatively considerably larger than one would 

£ conclude from the S values alone. On the other hand, the strengths of 

a--a bonds are somewhat weaker than their S values would indicate. 

Up to this point, it has been tacitly assumed that the heat 

of atomlzation oan be understood by a consideration of the bonding elec- 

trons alone. The form of Eq. (4) embodies this assumption.  Actually, 

it has been known for some time, in fact ever since soon after quantum 

meohanlos began to be applied to valence theory, that the so-called non- 

bonded repulsions are also of major importance for bond strengths. 

1> There are also nonbonded attractions which are often appreciable, al- 

4 though relatively of minor importance. 

Hence to have maximum energetic stability, it is neoessary not 

only that the attraotiona associated with the bonding eleotrons shall' c: 

as strong as possible, but also that the nonbonded repulsions shall be 

as weak aa possible. Each moleoule must then make such choices (T or .x 

bonds) and adjustments (type and degree of hybridisation) as to obtain 

the best compromise between bonded (plus nonbonded) attractions and non- 

T bonded repulsions. 

It may accordingly be wise to acknowledge that the oiroum- 

stanoea afforded us by Nature are by no means as simple as we should 
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like—or as wt ooamonly aa8urae**«*ih the matted of valence theory? and to 

face tbe need to take explioit account of the nonbonded aa well as the 

9 bonding interactions between electrons of a tome in a molecule,, An ap- 

proach to a solution of this problem will be taken up in Seotion V. To 

prepare the way, nonbonded repulsions are oonaidered briefly in Seotion 

IV. 

IV. OVERLAP INTEGRALS AND NONBONDED REPULSIONS 

3 4 VB theory and MO theory agree '^ in indicating that for every 

nonbonded pair of eleotrona of like type, one on eaoh of two neighbor- 

ing atoms, there is a repulaion energy roughly proportional to S , the 

square of the overlap integral of the orbitala ocoupied by the elec- 

trons of such a pair. Aa in the oase of bonded attractions, approxi- 

mate proportionality to I ia again reasonable. For the interaction of 

eleotrona in oloaed sheila, aa in the oaae of two rare gaa atoms, HO 

theory makes the following expression very plausible: 

B - *Z± A1I1S1
2/(1 " si2) " ^ ^ » (fi) 

** where the first sum is taken over all interatomio paira of electrons of 

like type (that i8, both members of a pair &,  or both x), and the A'S 

(A^ or A ) are the same as for bonded pairs.  (The K summation in Eq. •-01   —n mm 

(6) corresponds to pairs consisting of one & and one x electron; here 

theory predicts a nonbonded attraction! appreciable but not larg*, t.nl 

independent of S—which in this oase is always aero.) Sinoe usually thv. 

S's are small for nonbonded pairs, so that the factor 1/(1 - S. ) ia IJU> 

Important, and sinoe, also, experience indicates the need for a little 

additional empirical flexibility, Eq. (6) may be modified to 

E » fc^vA^2! - jfr^  . (6a) 
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One of the simplest examples is the repulsive interaction of 

two helium atoms at close range*, This corresponds to four equal nou- 

"bonduc 37i.v*ctron pair repulsions, all between ID electrons. Eq» <6) 

tbon becomes 

E » 2AIS2/(1 - S2) . 

This expression, with 3 computed theoretically and I « 24.58ev taken 

from experiment, and with A taken as 0*65, is compared in Table III 

(taken from Ref. 3), over a range of R values, with values of E evalu- 

ated by direot theoretical procedures*  It is seen that the fit is re- 

W markably good* A similarly good fit over a known range of R values is 

TABLE III 

VAN DER WAAL3 REPULSION ENERGY BETWEEN TWO HELIUM ATOMS 

y±<> 2 2*6 3 3.5 4 5 

3 0*275 0.161 0.091 0.049 0*026 0.0075 

2AS2I/(1 - S2) 
with A » 0.66 

2*61ev 0*85 0.27 0*077 0*021 0.0018ev 

Theoretical 2*38ev 0*81 0*26 0*080 0.025 0.0023ev 

obtainable using Eq. (6a) with vA suitably chosen. 

A further example ef nonbonded repulsions, of a different 

type, ooours in the interactions between Is H atom eleotrons in mole- 

cules of the type AH or AH • Here no definitely reliable values of 
**    6 n 

actual repulsions between H atoms in suoh moleoules seem to be avail- 

able, but it is of interest to see how big the overlap integrals are, 

and from these to estimate the corresponding repulsion energies using 

the same A value and formula (Eq. (6a)) which is found to fit for the 

osse of two helium atoms. Table IV (from Ref. 3) affords suoh a survey. 

It indicates that overlaps of nonbonded H atoms are surprisingly large, 

and suggests that the corresponding repulsion energy can reach 
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considerable totals in molecules containing several hydrogen atoms. 

Further studies of a similar nature indioate that nonbonded repulsion 

"energies between inner shells of one atom and the valenoe shell of 

TABLE IV 

OVERLAP OP N0N30NDED HYDROGEN ATOMS 

Compound. -*WX s "*ls,ls 
4fts8i/u - s2) 
mxh A • 0.55 

V 1.51 0.38 0.75ev 

CH.  or adjacent 
H atoms in C„H. 

2 6 
1.78 0.28 0.36 

C.-H..   (adjacent 
Lir£?03ia) 1.84 0.26 0.32 

6 6 
2.46 0.12 0.07 

another may often be very important in the total balanoe of positive 

and negative terms making up the net energy of atomization of any mole* 

oule. 

V.  MAGIC FORMULA FOR ATOMIZATION ENERGIES 

Following out the line of thought presented in the preoeding 

v sections, a "magic formula" has been developed4 for the purposes of re- 

producing or predicting and, especially, of understanding, heats of 

atomization. While this formula is still rather preliminary as to exact 

structure and as to the values of the empirioal coefficients in it, it 

is already good enough to reproduoe observed energies of atomization for 

a somewhat varied selection of molecules (CH, Ng, 0 , F_, CH, C H , 

C2H4* C2H2' H2+' He—He ^P*11®1011) wlth an average error of roughly •log, 

The magio formula is as follows: 



aU  - *"ki to*m    - r * RE 
all all nonbonded 
»e!eotron pile* of eleo- 

pair tr^ir nc« on ^(7) 
bonds seao atom 

in which   X. . =» A.S.lVll +3  )  for the bonded attraction 
ij   i ij lJ     ij   terms, 

and       Y, , « 0.7 A, S, „ J  ,      for the nonbonded repulsion I 
kl     "k kl kl      terms, / 

with A± and A. equal to 1*16 for (T bonds (A.^) and to 1*53 for % bonds 

(A ) to give D in ev (electron-volts). The subscripts 1, J; k, 1; m, n 

refer to the atoroio orbitals of the eleotrons oonoerned, the two member* 

• of any pair being on neighboring atoms* The quantities T.. or X. refei 

to mean ionlzation energies, an average being taken for the two orbitalo 
Q 

involved*  The nonbonded attraction terms K , which involve <?-* pairs, —uin 
are not funotions of overlap integrals, but can be computed theoreti- 

cally.   The promotion energy correction JP, whioh is a sum of individ- 

ual contributions from the various atoms, is often of considerable impor 

tanoe, Suoh a correction necessarily ooours whenever an atom has to be 

promoted from its ground state to a state of higher energy (valenoe 

state) before it can function as required in the particular compound. 

For carbon in its tetravalent oompounds, the promotion energy is always 

large. Finally, RE in Eqs, (7) denotes resonanoe energy of one kind or 
Q 

another,  including corrections for the extra stability whioh (as Paul- 

ing pointed out) ooours for bonds between atoms differing in electrone- 

gativity. However, Eq, (7) is not intended to apply to molecules con- 

taining truly ionic bonds. 

The meaning and use of Eq, (7) can best be made dear in terms 

£, of an example, For this purpose,4 the CH radical is convenient* I ' 

s,£ hybridisation is ignored, the electron configuration according to 

VB theory would be* 
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(lsc)
2(2sc)

2(2p<SJ,.liH)(Bp*c) i 

W there being a single C«—H bond formed by the oarbon 2j><f orbital with 

the is hydrogen orbital; the bond Is indicated by a dot In the above 

configuration symbolism* When hybridisation is admitted, the eleotron 

configuration beoomes 

(ls0)
2(2h»c)

2(2hc.lsH)(2p*c) , (8) 

where 2h and 2h» are two mutually orthogonal 2si-2£<5v hybrid orbitals of 

the forms 

2h « o2s + (1 - a2)^2p& ;    2h» *  (1 - «2)*2a - <&& . (9) 

a 
The hybrid 2h is a poaltlve hybrid,    strcng in the direotion of the hy- 

g 
drogen atom, while 2h* is a negative hybrid,    weak in that direotion and 

strong in the opposite direotion.    The speolal case a * £ would corres- 

pond to a tetrahedral orbital, but it is not necessary here to assume 

any particular value of a in advance.    On the contrary, as will be seen, 

the magic formula can be used to determine what value of a will give 

V the strongest bonding. 

Corresponding to Eq.   (8), Eqs.   (7) take the tore/ 

n 1 
'  For greater ease of writing, the subscripts i, J[, and so on, of Eqs. 

(7) are here replaoed by expressions in parentheses. 
I  i 

D * X(2hp,lsw)  -   (2/2)Y(ls.ls   )  -   (2/2)Y(2h»   ,1s   )  • *K<2p* ,1s   ) - P,^ 
o      H CH CH CH 

with   X(2hc,lsH) » A0ICH3(2hc,lsH)/[l • S(2hc,lsH)] 

Y(ls„,ls  > =• Q.lkJlilB ,1m)S2(ls  ,lsj  , 
On CUC 

and      Y(2h'c,lsH) » CVA^^a^,!^) 

"" ,C'l8H) " °-7A^(lac*l»H)S2(l8c,lsH; 



- 16 - 

The value of A,^ is 1.16; that of Idl^lSg) *• 151eVi while JQE • 

14.24ev.4 In Eqs. (10), Sj^h^ls^) and §(2h»c,lsE)t aa well as P, de- 

Ppend4 on the hybridisation coefficient a* One onn thu* use Eq. (J.O) to 

oompute D for any value of a, r~\u  if the values so computed are plotted 

against the "degree of hybrid! r.a*Ionrt a , it is found that the computed 

D has a maximum value at a « 0,155,  (This degree of hybridization, can 

be shown4 to be equivalent to 15,5# promotion of the carbon atom from 

its normal s, £** configuration toward ap .) It is reasonable to be- 

lieve that the value thus obtained is close to the true value. 11 One 

notes that the degree of hybridisation in 2h.    so determined is consider- 

pably less than for a tetrahedral hybrid. 

The following Table V, taken from Ref• 4, shows in a very in- 

structive way how hybridisation affects the various terms, and so the 

value of D, given by Eqs, (10), Particularly notable is the faot that 

TABLE V 

STRUCTURE OP J) FOR CH BY MAGIC FORMULA4 

a - 0 in Eq. (9) a = (0.155)* in Eq. (9) 

S(2hc,lsH) 0,509 0,686 

S(lac,lsH) 0.071 0.071 

S(2h'c,lsH) 0.553 0.308 

X(2hc,lsH) 5.57ev 6.73ev 

-y(isc,isH) -0,62 -0.62 

-y(2h'c,isH) -3.54 -1.09 

^C(2pitc,lsH) 0.40 0.40 

-p -0.49 -1.95 

D calculated 1.32ev 3.47 

t 
(Observed D =* 3.47ev) 
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hybridization has an important effect not merely in strengthening the 

bonding between the hydrogsn *l*9t?on and th* f'ha bonding orbital, but 

W alao in outting down the otb?.T'.'.s<? father large nonbonded repulsion be- 

twees the hydrogen eleotrc.D aarl the  (2h'   )    lone pair of carbon elec- 

troii!*.    Other notable .points v<c   che oonsiderable siae of the nonbonded 

repulsion between the H atom electron and the inner shell  (la) oarbon 

elections,  and of the nonbonded attraction between the H atom electron 

avid the 2p* oarbon eleotron.    All the effeots noted here in the example 

of CH recur with comparable importance for other molecules. 

Another instructive example is the nitrogen moleoule  (see Ref, 

J 4 for details).    Here for no hybridisation  (pure ,a2£3 trivalence)  the 

magic formula gives |> = -0.04ev, while for optimum hybridization, whioh 

turns out to correspond to 21 percent promotion from tfifP toward sja 

trivalence,  the computed D is 8.32ev, near the observed value*    Notable 

also is the large magnitude of the nonbonded repulsions exerted by the 

inner (lsj shells   (-4.3ev altogether,  almost half the net D).    Still 

more notable is the faot that, according to the magio formula,  it is 

essentially the n electrons alone whioh give the triple bond in N0 its 
C2 

great strength.    Their calculated contribution to D is 14.97ev;   the sum 

of all other contributions,  for a   » 0.21,  is -6.65ev.    The promotion 

energy P is 8.84ev. 

Because of the preliminary character of the magio formula, no 

great reliance should be plaoed on the exaot quantitative figures given 

above, but there seems to be little doubt that the corresponding major 

qualitative conclusions, at least, are correct. 

Even though the magio formula is still in a preliminary edition, 

£ in need of further development and testing as to its quantitative possi- 

bilities, it should probably already have a number of interesting appli- 

cations to the rough estimation of bond energies, in addition to the 
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insight it gives into the way in which actual net bond energies ere 

built out of a number of positive and negative contributions* For ex- 

w ample, it may be useful in estimating how bond energy depends on bond 

angles, in estimating the energies of free radicals and of molecules in 

exoited and ionised states (in some oases Eqs. (7) then need additional 

terms ),  and in estimating sterle repulsions; and it should be capable 

of extension to metals* Finally, it gives definite and probably rather 

reliable conclusions as to degrees of cjsovalent hybridisation, that is, 

of hybridisation of the kind illustrated in CH and N_ above, where <r 

bonds of increased strength are formed by hybridisation without in ore as t 

%  in the number of bonds. It is of interest that the degrees of isoval- 

ent hybridisation indioated by the magic formula are in good aooord 

with rough values indioated by several other lines of evidenoe for mole- 

cules suoh as HC1, HO, NH-, N , and 0 • 
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CAPTIONS FOR FIGURES 

m Figure 1.    Forms of some 2-quantum atomio orbitals  (sohematio; 

see text) drawn to show how like orbitals of two atoms overlap when the 

atoms are pushed together (imagine the interatomic distance R to be 

gradually decreased). 

Figure 2. Overlap integral S baaed on Slater orbitals for 2- 

quantum homopolar oonda. The symbols te, tr, di, refer respectively to 

tetrahedral,  trigonal, and digonal hybrid bonds  (<x » £,   (1/3)", and 

»(]$)** In Eqs,   (5)),    The lower scale is for the interatomlo distance R 
o 

in A.U. for oarbon-oarbon bonds.    With the use of the upper £ scale,  the 

figure is applicable to any second-row homopolar bond; £ means ZR/2a , 

where 2 is the Slater Z value  (of. Ref• 5).    The olrolea superimposed on 
o 

some of the curves are at R     = 1.54A  (C—C bond,  small full oirole), cc 
R-- = 1.35A  (C=s=C bond,   open oiroles),  and at R      • i,2o£  (C==0 bond, 

double open circles).    For SCF orbitals,  the 2£ic curve would be raised 

and the 2gf curve lowered considerably, and the others changed to lesser 

W extents  (of.  Table I). 
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